
Minimax estimation for FPCA on discretized data

Nassim Bourarach1 & Franck Picard2 & Vincent Rivoirard 1 & Angelina Roche 1

Given p, n two positive integers, we consider p noisy evaluations of n realizations of random
functions on a common design (tj)

p
j=1 ∈ [0, 1]:

Yi (tj) := Xi (tj) + εi,j, (i, j) ∈ [[1, n]]× [[1, p]].

where εi,j
i.i.d.∼ N (0, σ2) with σ2 > 0. The εi,j’s are independent of the random functions

Xi which are also i.i.d. and defined on [0, 1].

We are interested in the estimation of (ψ∗
ℓ , λ

∗
ℓ), respectively the ℓ-th eigenfunction and

the ℓ-th eigenvalue of the covariance integral operator associated to the covariance kernel
E [X1(s)X1(t)] for (s, t) ∈ [0, 1]2. Indeed, by virtue of Mercer’s theorem and the Karhunen-
Loève decomposition these eigenelements are crucial to FPCA (see Ramsay and Silverman
(2005) or Hsing and Eubank (2013) for a more thorough account of FPCA).

Our first contributions are non-asymptotic minimax lower bounds for the estimation of
these eigenelements when the covariance kernel is m-Hölder regular (for all m ∈ R∗

+) and
when the spectrum of the covariance integral operator associated with the kernel obey
some constraints.
These new bounds generalize and complement the first bound obtained by Belhakem et al.
(2021). The class of processes used for the minimax study allows us to analyze the impact
of the spectrum of the covariance operator on the estimation rates. Analogous quantities
to that of "relative rank" (which can be found in Jirak and Wahl (2022) and Mas and
Ruymgaart (2015)) come into play; we also obtain inconsistency results if the constraints
are not satisfied.

Then, we present simple estimators of the eigenelements, based on a projection onto
a wavelet basis. The obtained estimators are minimax optimal under a few additional
assumptions, and attain rates (in n and p) of the form n−1 + p−2m.

Surprisingly enough, even if the problem is non-parametric in nature, there is actually no
need for data smoothing.
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