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Abstract

Functional data classification is an active field of research that has multiple applications in dif-
ferent areas, such as medicine, weather modelling and forecasting, and speech recognition, among
others. In these types of classification problems, the instances available for induction are character-
ized by functions of a continuous parameter, such as trajectories in time or curves in space [11, 9].
Functional classification problems exhibit significant qualitative differences with their multivariate
counterparts [3, 13]. These differences hinge on the infinite-dimensional nature of the data, the ex-
istence of a natural ordering within the functional observations, their underlying smoothness, and
the fact that probability density functions generally does not exist for random functions [5]. For
equivalent Gaussian processes, even if the individual class-conditional probability densities do not
exist, an optimal classification rule can be formulated in terms of the Radon-Nikodym derivative
between the corresponding measures, which plays the role of the likelihood ratio in these types
of infinite-dimensional problems [1]. In this work we focus on cases in which this derivative is ill-
defined and near-perfect classification (zero Bayes error in the population limit) is obtained [6, 12].
Specifically, we derive explicit expressions of optimal prediction rules for binary classification prob-
lems in which the data instances are characterized by trajectories X, sampled from second order
stochastic processes defined on the interval [0, T ] in the real line. The stochastic processes from
which the instances are sampled are different for each of the two classes. This problem has been
analyzed earlier in the literature in both the homo- and heteroscedastic settings [6, 7, 4, 2, 12].
The conditions for near perfect classification when the stochastic processes have different means
were first derived in [6]. The current paper builds on that work by considering cases in which the
singularities are associated to the covariance structure of the processes. The main novel contribu-
tion is to derive classification rules when the means of the processes are equal [12]. These rules
are expressed in terms of limits of approximations to the inner products in the reproducing kernel
Hilbert spaces associated to the covariance functions of the processes. In the general case, these
limits are singular and, as a result, near-perfect classification is obtained. Carrying out a detailed
analysis of these rules and their singularities, we provide novel derivations of some known results
and gain insight into the mechanisms by which near perfect classification occurs. A further novel
result is the derivation of explicit tests to determine whether two Gaussian processes are equivalent
or mutually singular [10, 8]. These tests are derived from the condition that for the two processes
to be equivalent, the singularities that appear in the corresponding classification rule must cancel
out.
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[2] José R. Berrendero, Antonio Cuevas, and José L. Torrecilla. On the use of reproducing ker-
nel Hilbert spaces in functional classification. Journal of the American Statistical Association,
113(523):1210–1218, 2018.

[3] Antonio Cuevas. A partial overview of the theory of statistics with functional data. Journal of
Statistical Planning and Inference, 147:1 – 23, 2014.

[4] Xiongtao Dai, Hans-Georg Müller, and Fang Yao. Optimal Bayes classifiers for functional data
and density ratios. Biometrika, 104(3):545–560, 2017.

[5] Aurore Delaigle and Peter Hall. Defining probability density for a distribution of random functions.
Ann. Statist., 38(2):1171–1193, 04 2010.

[6] Aurore Delaigle and Peter Hall. Achieving near perfect classification for functional data. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 74(2):267–286, 2012.

[7] Aurore Delaigle and Peter Hall. Classification using censored functional data. Journal of the
American Statistical Association, 108(504):1269–1283, 2013.

[8] Jacob Feldman. Equivalence and perpendicularity of Gaussian processes. Pacific J. Math.,
8(4):699–708, 1958.

[9] Frédéric Ferraty and Philippe Vieu. Nonparametric Functional Data Analysis: Theory and Prac-
tice. Springer Series in Statistics. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.
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timal classification of gaussian processes in homo- and heteroscedastic settings. Statistics and
Computing, 30(4):1091–1111, jul 2020.

[13] Jane-Ling Wang, Jeng-Min Chiou, and Hans-Georg Müller. Functional data analysis. Annual
Review of Statistics and Its Application, 3(1):257–295, 2016.

2


